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A lower bound is obtained for the grand canonical partition function (and hence 
for the pressure) of a charge symmetric system with positive definite interaction. 
For the Coulomb interaction the lower bound on the pressure is the Debye- 
Hfickel approximation. 
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1, INTRODUCTION 

We are interested in the grand canonical partition function for a charge 
symmetric system consisting of two species of particles interacting via a 
positive definite potential. Using the s ine-Gordon transformation and 
functional integral techniques we establish a lower bound on the partition 
function. In the case of the Coulomb interaction the resulting lower bound 
on the pressure is the Debye-Hiickel  approximation. Mermin (1) has ob- 
tained a similar result for the canonical ensemble of an electron gas in a 
uniform positive background charge. A related lower bound on the correla- 
tion energy of our system with Coulomb interaction has been found by 
Totsuji. (2) 

Let v ( x ,  y )  denote the potential function on N a • R d. We assume that 
the potential is a symmetric function satisfying the following conditions. 

(i) Positive definite interaction: For  any n and a I . . . . .  % E N and 
X 1 . . . . .  X n ~ N d we have 

,~iegv(x i ,x:) > 0 
i,j= 1 
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(ii) v(x, y) is jointly continuous in its arguments. 
(iii) supxv(x,x) < oo. 

Let fl = e2/kT, where e is the magnitude of the charge, k is the 
Boltzmann constant, and T is the temperature. Let z denote the chemical 
activity. The potential energy of n particles with charges e,.e (e i = _ 1) is 

U n (Xi, Ei) = E EiCjl)(Xi, Xj) 
l <<.i<j<n 

For a volume A C_ R a the partition function Z and pressure II are 
o0 

z" fA fA Z =  E 7 E "'" E d X l ' ' "  dxnexp[-flUn(Xi, ' i)] 
n = 0  e l =  • 1 e n =  ---+1 

II = kT i- ~ In Z 

Let (dlx, qO be the Gaussian process with covariance v(x,y). So for 
x, y E N d, r and r  are Gaussian random variables with 

fa~, ep(x)~,(y) = v(x, y) 

Then the sine-Gordon transformation says 

z = f a/,exp{ 2 s :cosf q,(x) ]: } 
(See pp. 245-249 of Ref. 3 and pp. 368-370 of Ref. 4.) The normal 
ordering : : arises from not including the self-energies of the particles in 
the definition of U.. For our purposes the normal ordering is most 
conveniently defined by 

:exp(a~): = exp( - �89 a 2 f d ~  ~,2)exp(aq,), a ~ C  

and the requirement that : : be linear. In particular 

:cosq,:= exp( �89 f dt~r162 

:,2: = ,2 _ f +  

(See pp. 107 and 108 of Ref. 4.) 
If fl is small then Z should be approximately 

f.exp{2zfJx[l-�89 B :@(x):]} 
Actually, /3 has dimensions of length. A scaling argument shows that the 
appropriate dimensionless condition is that fl 3z be small. We will show that 
this integral is an exact lower bound on Z for all values of fi and z. This 
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integral can be computed explicitly. (See pp. 175-177 of Ref. 4.) The result 
is 

exp{2zlAI + �89 A - ln (1  + 2fiZVA)]} 
where VA is the integral operator on L2(A) with kernel v(x, y) and I A] is the 
volume of A. 

For example, in three dimensions let 

1 - exp(- I  x - y [ / l )  
v(x,y) = 4~lx -yl 

So v(x, y) is a Coulomb potential with a short-range force depending on l. 
In this case one may compute the infinite volume limit of our lower bound 
on the pressure and then let l--->0 to remove the short-range force. The 
result is the Debye-Hfickel approximation for the pressure (s) : 

1 
lim,~o A---)R31im ~Al ln( f dl, exp( 2z fadx [1- - ~ fi :do2(x): ]} )kT 

=[2z + ~6--~( flz)3/2]kT 

2. RESULTS 

In the following, 

1 fdl.tF(~)exp{2zfad x :cos[~/-flO(x)]: } (F(~,)> = g 

for a function F of the ~,(x)'s. The key to our result is the following 
observation. The method of proof is similar to methods used by Fr6hlich 
and Park. (6) 

Lemma. For any y E R a 

(-1)n(:~2n(y):>/> 0. 

Proof. Since 

:cos[ ~ ~b(x)]: = exp[ �89 flv(x,x)]cos[ ~ qb(x) ] 

condition (iii) allows us to expand the exponential in 

fat*(-I)" :@"(y):exp(2zfflx :cos[~/-~(x)l: } 
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and interchange the sum and fdlz. So it suffices to show 
n 

f d ~ ( - 1 ) "  :o2n(y).* i_~1 cos [ ~ ( x i ) ]  />0 

for x 1 . . . . .  x n E •d. 
Using the identity 

f i  = ~-~1 Z * '"  Z COS f.iOLi COS(./) z ,  q=+ l  c n=• i=1 
it suffices to show 

] fd~(-1)" :~b2"(y):cos ei@(xi) > 0 

Since ~(y) and ~,~i=lCiep(xi) are Gaussian random variables this integral 
may be computed. The result is 

[~f-fli~__l'il2(y, xi)12nexp[-- -~fl2 i,~=l'iCj'l)(Xi,Xj)] 
which is > 0. �9 

We can now prove our lower bound on the partition function. 

Theorem. 

z >_-exp(2~lAI)fd~exp[-Bzfadx :@(x):] 
Proof. Define an interpolating function 

Z(t) = fdt,  exp(2zt-2fadx { :cos[ tVrBr }) 
Let ( )t be defined by 

_ 1  fa.F(~,)exp(2zt-:s  <F(r Z(t) 
Then 

z'(t) 
z ( o  

I ] d ~.. (2n)~ :*:n(x): >, = 2 z f J x  { ~ . = 1 

= :@x ~ (:n- :)~:~ 
n=2 (2n)! 

> 0  

( -  1)n<:~,:"(X):>, 
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by the lemma. So Z(t) is an increasing function of t. Hence Z(1) 
>1 limt_~oZ(t ). Since Z ( 1 ) =  exp(-2z[A[)Z, the proof is complete if we 
s h o w  

limZ(t) = f a exp[ - Bz fAax :r 
This follows from the dominated convergence theorem since 

sup sup, 1} 
0 < t < l  

< sup supt-2{exP[�89 - 1} < oe 
O < t < l  x 

by condition (iii). [] 

Remarks. (1) Fr6hlich and Park showed that 

<@(y)> < f a t  @(y)  

This is the lemma for n = 1. (See Corollary 3.2 of Ref. 6.) 
(2) The proof of the lemma is valid if @(y) is replaced by any Gaussian 

random variable. In particular $(y) may be replaced by "smeared fields" 
fdy e#(y)f(y), where f is an integrable function on •a. 

(3) The grand canonical partition function for a quantum mechanical 
system may also be expressed as a functional integral. (7) In the case of 
Boltzmann statistics (and possibly boson statistics) the above techniques 
can be applied. Unfortunately the resulting lower bound cannot be easily 
evaluated. 

(4) The bound of the theorem may also be proved using Jensen's 
inequality in the Sine-Gordon representation. However, the proof given 
here generalizes to give a lower bound on the partition function in an 
external electric field. 

APPENDIX 

In this Appendix we take care of two technical details. We have 
assumed that the "unsmeared fields" q)(x) are random variables and not 
distributions. For the existence of a Gaussian process for which this holds 
see pp. 16 and 17 of Ref. 3. 

Let f~ denote the probability space on which the q)(x) are defined. In 
order to carry out the sine-Gordon transformation we must know that ~ is 
measurable as a function of (x, 0~) E N d X f~. Since v(x, y) is jointly contin- 
uous, x ~ ~(x) is continuous from R d into L2(dff). So we can apply the 
following result (see p. 61 of Ref. 8.) 
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Lemma. Let x -+ (h(x) be continuous from R d into L2(d/~). Then there 
exists a process r such that for each x 

~(x)  = q)'(x) a.e. with respect to/~ 

and (h' is a measurable function of (x, ~0). Consequently, x-->(h'(x) is a 
Lebesgue measurable function on •d for almost all o~ E f~. 

Note that ~'(x) also has covariance v(x, y). So we may work entirely 
with the measurable process q; instead of ~. 
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